Research Topic: Advanced materials for thermoelectric applications
Contact: pavan@bce.au.dk
Pavan Kumar Ventrapati received his MSc (2006) in chemistry from Andhra University, Vizag. He obtained his Ph.D. (2014) from Indian Institute of Technology Madras (IITM), Chennai, India. After completing his Ph.D., he pursued postdoctoral research at the CRISMAT Laboratory, Caen and at the Institute Jean Lamour, Nancy, France. Currently, he serves as a postdoctoral fellow at the Aarhus University, Denmark. His research interests are in the broad field of solid state and materials chemistry with special emphasis on developing novel thermoelectric materials. Understanding the structure-property relationship is a key to the rational design of such materials. His research focuses on the relationship between the atomic structure and bonding in inorganic materials and the resulting electronic, thermal and magnetic properties. He worked earlier on Cu-S based compounds, Bi- based chalcogenides, intermetallic compounds, and flexible semiconductors for both low and high temperature thermoelectric studies.
As a postdoctoral researcher in Anja-Verena Mudring’s group, his current research focuses on design, fabrication, and tailoring of advanced thermoelectric materials with special emphasis on crystal growth of High entropy alloys for potential thermoelectric applications. He is also interested in exploring novel topological semimetals for low temperature thermoelectric applications. He is studying the influence of ionic liquids in the formation of nanocrystals to produce efficient thermoelectric materials.
Publications
[1] C. Candolfi, L. Le Gars, G. Guélou, V. Pavan Kumar, C. Prestipino, M. Pasturel, P. Levinský, P. Lemoine, B. Raveau, X. Shen, O. Lebedev, J. Zanotti, E. Guilmeau, “Influence of Cationic Ordering on the Lattice Dynamics of Monoclinic Cu5Sn2S7 and Cubic Cu5Sn2S6.65Cl0.35” Journal of Physical Chemistry C (Just accepted).
[2] V Pavan Kumar, S. Passuti, B. Zhang, S. Fujii, P. Boullay, C. Prestipino, B. Raveau, P. Lemoine, A. Paecklar, N. Barrier, X. Zhou, M. Yoshiya, K. Suekuni, E. Guilmeau, “Engineering Transport Properties in Interconnected Enargite‐Stannite Type Cu2+xMn1−xGeS4 Nanocomposites” Angewandte Chemie, 134 (2022) e2022106. DOI: 10.1002/ange.202210600
[3] P. Levinský, V. Pavan Kumar, A. Dauscher, J. Hejtmánek, C. Candolfi, B. Lenoir “Achieving High Thermoelectric Performance in Mixed Natural-Synthetic Tetrahedrites” ChemNanoMat, 8 (2022) e20220036. DOI: 10.1002/cnma.202200364
[4] G. Guelou, V. Pavan Kumar, V. Carnevali, O. I. Lebedev, B. Raveau, C. Couder, C. Prestipino, P. Lemoine, B. Malaman, J. Juraszek, C. Candolfi, B. Lenoir, R. Al Rahal Al Orabi, M. Fornari, and E. Guilmeau, “Long-Range Cationic Order Collapse Triggered by S/Cl Mixed-Anion Occupancy Yields Enhanced Thermoelectric Properties in Cu5Sn2S7” Chemistry of Materials, (2021). DOI: 10.1021/acs.chemmater.1c03434
[5] V. Pavan Kumar, P. Lemoine, V. Carnevali G. Guelou, O. I. Lebedev, B. Raveau, R. Al Rahal Al Orabi, M. Fornari, C. Candolfi, C. Prestipino, D. Menut, B. Malaman, J. Juraszek, K. Suekuni and E. Guilmeau, “Local-Disorder-Induced Low Thermal Conductivity in Degenerate Semiconductor Cu22Sn10S32” Inorganic Chemistry, 60 (2021) 16273. DOI: 10.1021/acs.inorgchem.1c02105
[6] V. Pavan Kumar, P. Lemoine, V. Carnevali G. Guelou, O. I. Lebedev, P. Boullay, B. Raveau, R. Al Rahal Al Orabi, M. Fornari, C. Prestipino, D. Menut, C. Candolfi, B. Malaman and E. Guilmeau, “Ordered sphalerite derivative Cu5Sn2S7: a degenerate semiconductor with high carrier mobility in the Cu–Sn–S diagram” Journal of Material Chemistry A, 9 (2021) 10812. DOI:10.1039/D1TA01615F
[7] V. Pavan Kumar, S. Misra, G. Delaizir, A. Dauscher, B. Lenoir and C. Candolfi, “Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7”, Journal of Material Chemistry C, 8 (2020) 14037. DOI: 10.1039/D0TC03935G
[8] V. Pavan Kumar, S. Mitra, G. Guelou, A. R. Supka , P. Lemoine, B. Raveau, R. Al Rahal Al Orabi, M. Fornari, K. Suekuni and E. Guilmeau, “Transport properties and electronic density-of-states of Zn-doped colusite Cu26Cr2Ge6S32”, Applied Physics Letters, 117 (2020) 173902; DOI: 1063/5.0023712
[9] L. Paradis-Fortin, P. Lemoine, C. Prestipino, V. Pavan Kumar, B. Raveau, V. Nassif, S. Cordier, and E. Guilmeau “Time-Resolved In Situ Neutron Diffraction Study of Cu22Fe8Ge4S32 Germanite: A Guide for the Synthesis of Complex Chalcogenides”, Chemistry of Materials, 32 (2020) 8993, DOI: 10.1021/acs.chemmater.0c03219
[10] G. Guelou#, V. Pavan Kumar#, A. Bourhim, P. Lemoine, B. Raveau, A. R. Supka, O. I. Lebedev, R. Al Rahal Al Orabi, M. Fornari, K. Suekuni and E. Guilmeau, “Toppling the transport properties with cationic over-stoichiometry in thermoelectric colusite, [Cu26Cr2Ge6]1+δS32”, ACS Applied Energy Materials, 3 (2020) 4180, DOI: 10.1021/acsaem.0c00726
[11] L. Paradis-Fortin, G. Guelou, V. Pavan Kumar, P. Lemoine, V. Caignert, C. Prestipino, O. Merdrignac-Conanecb, G.R. Durand, S. Cordier, O.I. Lebedev and E. Guilmeau, “Structure, microstructure and thermoelectric properties of germanite-type Cu22Fe8Ge4S32compounds”, Journal of Alloys and Compounds, 831 (2020) 154767. DOI: 10.1016/j.jallcom.2020.154767
[12] P. Lemoine, V. Pavan Kumar, G. Guelou V. Nassif, B. Raveau, and E. Guilmeau, “Thermal stability of the crystal structure and electronic properties of the high power-factor thermoelectric colusite Cu26Cr2Ge6S32” Chemistry of Materials, 32 (2020) 830. DOI: 10.1021/acs.chemmater.9b04378
[13] V. Pavan Kumar#, G. Guelou#, P. Lemoine, B. Raveau, A. R. Supka, R. Al Rahal Al Orabi, M. Fornari, K. Suekuni and E. Guilmeau, “Copper rich thermoelectric sulfides: size mismatch effect and chemical disorder in the [TS4]Cu6 complexes of Cu26T2Ge6S32 (T = Cr, Mo, W) colusite”, Angewandte Chemie, 58 (2019) 15455. DOI: 10.1002/anie.201908579
[14] V. Pavan Kumar, A. R. Supka, O. I. Lebedev, P. Lemoine, B. Raveau, K. Suekuni, V. Nassif, R. Al Rahal Al Orabi, M. Fornari and E. Guilmeau, “High power factors of Thermoelectric Colusites Cu26T2Ge6S32 (T = Cr, Mo, W): Toward Functionalization of the conductive “Cu-S” Network”, Advanced Energy Materials, 9 (2019) 1803249. DOI: 10.1002/aenm.201803249
[15] V. Pavan Kumar, L. Paradis-Fortin, P. Lemoine, G. Le Caer, B. Malaman, P. Boullay, B. Raveau, G. Guélou and E. Guilmeau, “Crossover from germanite to renierite-type structures in Cu22-xZnxFe8Ge4S32 thermoelectric sulfides”, ACS Applied Energy Materials, 2 (2019) 7679. DOI: 10.1021/acsaem.9b01681
[16] C. Bourgès, V. Pavan Kumar, B. Raveau, Y. Miyazaki and E. Guilmeau, “Synthesis and thermoelectric properties of CuCoxTi2-xS4 thiospinels”, Journal of Alloys and Compounds, 781 (2019) 1169. DOI: 10.1016/j.jallcom.2018.12.102
[17] V. Pavan Kumar, L. Paradis-Fortin, P. Lemoine, V. Caignert, B. Raveau, B. Malaman, G. Le Caer, S. Cordier and E. Guilmeau, “Designing a thermoelectric copper-rich sulfide from a natural mineral: Synthetic Germanite Cu22Fe8Ge4S32”, Inorganic Chemistry, 56 (2017) 13376. DOI: 10.1021/acs.inorgchem.7b02128
[18] V. Pavan Kumar, T. Barbier, V. Caignaert, B. Raveau, R. Daou, B. Malaman, G. Le Caer, P. Lemoine and E. Guilmeau, “Copper hyper-stoichiometry, the key for the optimization of thermoelectric properties in stannoidite”, Journal of Physical Chemistry C, 121 (2017) 16454. DOI: 10.1021/acs.jpcc.7b02068
[19] V. Pavan Kumar, T. Barbier, P. Lemoine, B. Raveau, V. Nassif and E. Guilmeau, “Crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of Cu5FeS4 Bornite”, Dalton Transactions, 46 (2017) 2174. DOI: 10.1039/C6DT04204J
[20] V. Pavan Kumar, Emmanuel Guilmeau, Bernard Raveau, Vincent Caignaert and U. V. Varadaraju, “A new wide band gap thermoelectric quaternary selenide Cu2MgSnSe4”, Journal of Applied Physics, 118, (2015) 155101. DOI: 10.1063/1.4933277
[21] V. Pavan Kumar and U. V. Varadaraju, “Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe2”, Journal of Solid State Chemistry, 212 (2014) 64-68. DOI: 10.1016/j.jssc.2014.01.016